Cathepsin B-mediated yolk protein degradation during killifish oocyte maturation is blocked by an H+-ATPase inhibitor: effects on the hydration mechanism.

نویسندگان

  • Demetrio Raldúa
  • Mercedes Fabra
  • María G Bozzo
  • Ekkehard Weber
  • Joan Cerdà
چکیده

In teleost oocytes, yolk proteins (YPs) derived from the yolk precursors vitellogenins are partially cleaved into free amino acids and small peptides during meiotic maturation before ovulation. This process increases the osmotic pressure of the oocyte that drives its hydration, which is essential for the production of buoyant eggs by marine teleosts (pelagophil species). However, this mechanism also occurs in marine species that produce benthic eggs (benthophil), such as the killifish (Fundulus heteroclitus), in which oocyte hydration is driven by K+. Both in pelagophil and benthophil teleosts, the enzymatic machinery underlying the maturation-associated proteolysis of YPs is poorly understood. In this study, lysosomal cysteine proteinases potentially involved in YP processing, cathepsins L, B, and F (CatL, CatB, and CatF, respectively), were immunolocalized in acidic yolk globules of vitellogenic oocytes from the killifish. During oocyte maturation in vitro induced with the maturation-inducing steroid (MIS), CatF disappeared from yolk organelles and CatL became inactivated, whereas CatB proenzyme was processed into active enzyme. Consequently, CatB enzyme activity and hydrolysis of major YPs were enhanced. Follicle-enclosed oocytes incubated with the MIS in the presence of bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, underwent maturation in vitro, but acidification of yolk globules, activation of CatB, and proteolysis of YPs were prevented. In addition, MIS plus bafilomycin A1-treated oocytes accumulated less K+ than those stimulated with MIS alone; hence, oocyte hydration was reduced. These results suggest that CatB is the major protease involved in yolk processing during the maturation of killifish oocytes, whose activation requires acidic conditions maintained by a vacuolar-type H+-ATPase. Also, the data indicate a link between ion translocation and YP proteolysis, suggesting that both events may be equally important physiological mechanisms for oocyte hydration in benthophil teleosts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cathepsin B-mediated yolk protein degradation during killifish oocyte maturation is blocked by a H-ATPase inhibitor: Effects on the hydration mechanism

1 2 In teleost oocytes, yolk proteins (YP)-derived from the yolk precursors vitellogenins are 3 partially cleaved into free amino acids and small peptides during meiotic maturation prior to 4 ovulation. This process increases the osmotic pressure of the oocyte that drives its hydration 5 which is essential for the production of buoyant eggs by marine teleosts (pelagophil species). 6 However, th...

متن کامل

Hydration of rainbow trout oocyte during meiotic maturation and in vitro regulation by 17,20{beta}-dihydroxy-4-pregnen-3-one and cortisol.

Although oocytes of many teleost fish, especially marine species, are subjected to a hydration process during meiotic maturation, which leads to an important volume increase, no noticeable hydration of the preovulatory oocyte has ever been reported in rainbow trout (Oncorhynchus mykiss). In the present study, oocyte water content and dry mass were monitored using consecutive samples taken in vi...

متن کامل

Effects of Lactobacillus rhamnosus on zebrafish oocyte maturation: an FTIR imaging and biochemical analysis.

The aim of this study was to verify the effects of probiotic Lactobacillus rhamnosus on zebrafish oocyte maturation using FPA (focal plane array) FTIR imaging together with specific biochemical assays (SDS-PAGE, real-time PCR and enzymatic assay). Oocyte growth is prevalently due to a vitellogenic process which consists of the hepatic synthesis of vitellogenin and its selective uptake during ma...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

The Effects of Progesterone on Oocyte Maturation and Embryo Development

Oocyte maturation and embryo development are controlled by intra-ovarian factors such as steroid hormones. Progesterone (P4) exists in the follicular fluid that contributes to normal mammalian ovarian function and has several critical functions during embryo development and implantation, including endometrial receptivity, embryonic survival during gestation and transformation of the endometrial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 290 2  شماره 

صفحات  -

تاریخ انتشار 2006